The main categories of techniques for microinvasive preparation (MIP) include chemo-mechanical cleaning with Carisolv gel, air abrasion and dental lasers. The trends for the replacement of the conventional method of preparation led to focus the attention of researchers on the impact of alternative techniques for MIP on hard dental tissues and underlying dental pulp. MIP techniques claim for controlled removal of infected and softened dentin while preserve healthy hard dental tissues and do it with minimal discomfort for the patient. However, currently available data provide contradictory the impact of alternative techniques of MIP on hard dental tissues compared to conventional preparation.

Possible reasons for this are the variety of experimental studies and difficulties to standardise the results of clinical researches. It is striking that researchers who give the most positive evaluation of alternative methods of preparation are using mainly clinical criteria for evaluation (perception and tolerance of the patient, noise, atraumatic work, colour and texture of the dentine when probing etc) which are some subjective.

Opposite, the SEM and histologic evaluations are not unanimous for its benefits and advantages. On the dental market new improved versions of alternative systems for preparation are available claiming for clinical efficiency, but scientific data are still scarce (these are generally the multi-frequency high-energy lasers and air abrasion devices). For that reason periodic updates of researches in this rapidly developing and promising field of dentistry are needed. The purpose of this in vitro study was to evaluate by SEM the ultrastructural changes in the hard dental tissues treated with Er:YAG laser (LiteTouch) and conventional preparation with diamond burs/air turbine and steel burs/micromotor.

Methods

Experimental design: the study used 30 human teeth freshly extracted due to advanced periodontal disease. The preparation involved natural carious lesions on tooth surface.

According to the preparation technique the teeth were divided into three groups of 10 teeth (n=10):

Group 1: Laser preparation by Er: YAG laser (LiteTouch, Syneron, Israel) (Fig 1 a, b)

Group 2: Mechanical rotary preparation by diamond burs/air turbine

Group 3: Mechanical rotary preparation by steel burs/micromotor

Preparations are made strictly according to manufacturer’s instructions for service.

The removal of caries is proved by clinical methods – observation and probing. After preparation the teeth are immersed for one hour in four percent buffered fixative solution of glutaraldehyde (0.075 M, pH 7.3). Then rinsed with distilled water and placed for 90 min in cold buffer solution of sodium cacodylate (0.02M, pH 7.2, 600 mOsm) for fixation of organic matter. Subsequent dehydration is carried out in ethanol in ascending series of 30, 50, 70, 80, 95 and 100 per cent in one hour in each series, such as drying of the teeth is based on CPD (Critical Point Drier) method in SEM evaluation of morphological changes

Join the fast growing success of Syneron Dental Lasers

Presenting

LITE TOUCH™

The unique fiber-free Er:YAG laser

Dentist’s 1st Choice for hard and soft tissue procedures

Live presentations by key opinion leaders at Booth N050, Hall 4.2

IDS Show • Cologne, Germany, March 22-26, 2011

For seats reservation please contact: dental@syneron.com

W W W . S Y N E R O N D E N T A L . C O M
Fig 1 a, b: Laser preparation with Er-YAG laser Lite Touch (Syneron, Israel) “Hard tissue mode” (400mJ/20Hz; 8.00W) are fixed on metal stand and with water cooling) a thin, smooth diamond burs, air turbine and retentive (Fig 2 c). The boundary between enamel and dentin is unclear and the cavity surfaces appeared strong. Laser ablation changes enamel and dentin is not perceptible.

In Group 2 (preparation with Er:YAG laser (Group 1) are characterised by a lack of definite and precise geometric configuration and outlined cavity elements. There is rough and irregular surface without presence of smear layer (Fig 2 a). Dentinal tubules orifices are clearly exposed. Intertubular dentin is ablated more than peritubular dentin and that made dentinal tubules appearance more prominent (Fig 3 b). Laser ablation changes enamel and the surfaces appeared strong retentive (Fig 2 c).

In Group 2 (preparation with diamond burs, air turbine and water cooling) a thin, smooth forms here smooth contours. When analysing the SEM photomicrographs of the specimens examined, it is found that the conventional method of cavity preparation with steel burs and micromotor at low speed without water cooling (Group 3) leaves contaminated surface covered with smear layer of dentin debris without visible dentinal tubules orifices. (Fig 4 a, b). Thick smear layer covers all treated surfaces. The walls of the cavities are smooth and rounded and the border between enamel and dentin is not perceptible.

The experimental results of the presented study revealed significant differences in the surface morphology of the studied samples, which would affect the ability to perform effective adhesive bonding. These morphological differences are highly dependent on the mechanism of action of the used preparation systems.

The philosophy of minimally invasive cavity preparation approach is based on several main principles – to remove only irreversibly damaged dental tissues and to avoid macroteention preparation in healthy tissues. Additionally these techniques should protect the underlying pulp and to leave the treated surface suitable for adhesive bonding. Antibacterial effects of the alternative preparation techniques must not be lower than those of standard necrotomy with rotary instruments and even to excel them.

Nowadays the laser devices available for clinical use are capable for effective and controlled ablation of hard dental tissues’
on Er:YAG lasers, but without thermic degeneration of surfaces, areas of extensive recrystallisation, melted surfaces or cracks in the dentin, as described in some in vitro studies. It is also reported for better opportunities for adhesive bonding, faster ablation of enamel and dentin compared with rotating burs and an increase in dentinal microhardness after treatment with Er:YAG pulsed lasers. This statement is not confirmed by other studies. The marked surface irregularities and lack of smear layer observed in the recent study, noted also in other researches, provide a solid evidence for the physical mechanism of bonding with composite materials after laser treatment. This fact is not yet fully explored as a possible opportunity to eliminate acid etching of hard dental tissues and its related adverse effects on the underlying dentin and pulp. The results of some contemporary studies showed that despite the differences between individual authors, generally the amount of smear layer after treatment with Er:YAG laser in all cases is less than that after conventional rotating instrument use, and surface changes are characterised by markedly rugged topography.

The morphological features of hard dental tissues observed in our study suggested us to generalise that cavity preparation with Er:YAG laser is consistent with the principles of minimally invasive preparation, leaving clean surfaces and strong microretentions suitable for adhesive restorations. These assumptions about the benefits of alternative techniques for minimally invasive preparation of dental tissues for adhesive restorations should be confirmed in future clinical studies.

Conclusion SEM analysis of hard dental tissues treated with steel and diamond burs showed surfaces covered with a thick layer of debris, which could compromise the adhesion of filling materials. Dental tubules orifices are obturated with debris, with exception of the areas under water turbulence where the debris is partially removed. All laser-treated samples showed no evidence of thermal damage or signs of microcrystallisation and melting. The SEM examination revealed characteristic micro-irregularities of the lased dentin surface without any smear layer, and opened dental tubules. Interstitial dentin is ablated more than peritubular dentin and that made the dental tubules appearance more prominent. Er:YAG laser ablated enamel effectively and remained exposed enamel prisms without debris. The surfaces are very retentive.

The author declares not having any financial interest in a company (or its competitors) that makes a product discussed in the article or any conflicts of interest.

References: